Rainwater Harvesting System Installation

February 1, 2015

Why did we choose to install a 5,000 gallon tank (technically 4,995 gallons) for our rainwater harvesting system?  The short answer is because that’s what made sense for us.  We’re using the rainwater to flush the toilets and for the cold water laundry.  We estimate this volume to be around 6,000 ~ 8,500 gallons per year (roughly 500 ~ 700 gallons per month).  So, we could have installed a much smaller tank, say 600 gallons if we wanted to.  But when we looked at the cost of installing the system (this includes tank, pipes, filters, fittings, labor, etc.) the cost of the tank is just a fraction of the total system cost.  Most of the cost is in the labor.  So why not get a large tank?

But not so large.  The reason why manufacturers sell tanks sized 4,995 gallons (just a shade smaller than 5,000 gallons) is because of the building codes.  Above ground rainwater harvesting tanks larger than 5,000 gallons need to be placed on a foundation or platform.  Tanks smaller than 5,000 gallons can simply be placed on a bed of gravel.  Thus, we opted for the 4,995 gallon tank that will allow us to capture larger volume of rainwater during the winter without having to build a special foundation for it.

The amount of rainfall in Santa Cruz has been highly variable in the last 7 years.  I invite you to take a peek at the data from WeatherCat website which shows the annual rainfall in Santa Cruz ranging from 15 inches to 34 inches annually.  We’re grateful that this private weather station located just 2 miles away from our house provides us with lots of useful detailed climate data, much better than what we could do for ourselves.  Thanks WeatherCat!  So, how many gallons of water can be harvested from 15 – 34 inches of rain on our rooftop?  It depends not only on how much rain we get but also on the roof area.  We have most of the gutters (about 3/4 of the total roof area) directed towards the rainwater tank.  This means 15 – 34 inches of rain per year can yield between 14,000 to  32,000 gallons of water.

By the way, the rule of thumb is 1 inch of rain yields about 600 gallons for 1,000 square feet roof.  To get the precise conversion of inches of rain to gallons of water simply plug in the figures in this calculator.

Santa Cruz Municipal Utility bill tells us that our annual water usage (Apr 2013 – Mar 2014) is pretty low — 38 CCF or 28,424 gallons for everything.  This includes water used for toilets, cooking, bathing, laundry, watering the garden, etc.  What this means is that even if our roof areas is capable of capturing over 30,000 gallons of rainwater on a very rainy year we won’t be able to use all of it.  Trying to maximize storage for our roof area is an overkill.

Rainwater Tank

The 4,995 gallon tank comes in 2 different shapes — tuna can or the soup can.  Easy to imagine them right?  The tuna can is wider and shorter than the soup can and it fits nicely into the corner of our yard where the dark green tank blends in with the trees.  The model is Bushman CWTX5-132 which measures 10-feet 9-inches in diameter and 8-feet tall.  It looked huge when it arrived on Jon Ramsey’s trailer on a July morning.  They said that it barely cleared some of the bridges and freeway overpass on the way.  It rolled easily down the driveway into the backyard.  The team from AquaSoleil was busy in our back yard for a few days.

rainwater tank delivery
Getting it placed properly in the corner of the yard was a bit tricky — 4 men rolled and turned the tank along the temporary skids positioning the tank just so.  Micro adjustments were made before the tank was tipped over right side up.  Experienced eyeballing enabled the guys to place the tank so that the openings would be aligned with the pipes in the trench.

skids to position the tank

Now let’s follow the path of the water, from the rooftop to the tank.  Rain from 1,503 square feet of roof is directed to the rainwater tank via the roof gutter and underground pipes that makes its way over to the back corner of the yard.  The rest of the roof area feeds rainwater to the rain garden next to the tank.

Gutters, Leaf Screens

Since there are no tall trees next to the gutters we weren’t worried about having fallen leaves clog up the gutters and the downspouts.  Still, there were gritty sand-sized debris accumulated in the gutter when we took a look one week before the rainwater system installation.  To make sure we get clean water into the tank we cleaned out the gutters thoroughly by hauling the shop vac onto the roof and vacuumed it.

clean gutters

RHINO Gutter Guard was installed over the gutter.  This will keep the gutters clean.  No more cleaning gutters!

Rhino Gutter Guard

Rain collected in the gutters flow down through the 2 screens from the downspout into the pipe that conveys water to the tank.  In case you’re wondering, this was in place before the Rhino guard on the gutters.  Now that we have screens directly on the gutters we really don’t need the leaf screens but it’s there just in case.

leaf catcher in the downspout

Fittings, Connections

The pipes that convey rainwater from the house to the tank in the backyard were installed 3 years ago during the installation of the french drain.  3-inch PVC pipes are buried 18-inches below grade and gently sloped down across the yard to where the rainwater tank is.  Also installed 3 years ago were the electrical conduit to power the pump and the 1-inch rainwater supply line (purple pipe).  The open ends of these pipes were covered with duct tape.  When the rainwater system project came along we found some debris in the pipes since the duct tape fell off.

In the photo below the green pipe on the right (without any valves) is the overflow to the rain garden when the tank continues to fill beyond capacity.  The green pipe on the left conveys rainwater from the roof and fills the tank.  The two valves in the picture will either let the water pass or not.  When we want the rainwater to fill the tank the upper valve will point upwards and the lower valve will be in a horizontal position to prevent water from draining directly into the rain garden.  When the tank is full and we want to simply direct the rainwater straight to the rain garden the valve positions will be reversed — upper valve in horizontal position and the lower valve pointing down. (Note:  The position of the valves in the photo below shouldn’t be used because the rainwater will never fill the tank.)

Rainwater tank

The green hose coming out from the bottom is feeding the water from the tank into the pump.

Outlet from rainwater tank
water filter and meter installed

Filter

Inside the lavender box in the above photo are the water filter and the water meter.  EZ Kleen Y-filter is installed to remove debris before the rainwater goes into the pump.  The removable cartridge is easy to clean.

EZ Kleen 100 micron Y-filter

Water Meter

This Netafim M series water meter is used to measure the amount of water that flows from the pump into the house.  This was installed to measure the volume of rainwater used inside the house for toilets flushing and cold water laundry.  On a monthly basis a field crew from Ecology Action comes by to take measurements and water samples.  Thus far they’ve told us that our rainwater is pretty clean.

Netafim M-series Water Meter

Pump

Grundfos MQ 3-45 pump turns on automatically when it detects water flow and shuts off automatically when water ceased to flow.  So it only turns on when we flush the toilets or when the washing machine calls for cold water.

Grundfos MQ 3-45 pump

Notice the rainwater spigot is painted purple and the tag clearly says non-potable water.  If you happen to visit our yard please don’t drink this water!

Rainwater Spigot

Connect and Test

Since there were 2 different companies involved in installing our rainwater system infrastructure we asked both to be present when we did the initial test.  Back in 2012 Santa Cruz Green Builders installed the dual plumbing to the toilets and washing machine inside the house as well as the underground infrastructure in the yard.  In 2014 AquaSoleil installed the tank, pump, and the fittings.  

It was a dry August week with no chance of rain when we did the installation.  So the tank needed to be partially filled with city water supply to do the end-to-end test.  First part of the test was to see if the water from the gutter will fill the rainwater tank.  This was simulated by taking the garden hose and running the water into the downspout.  This test removed all doubt of whether gravity feeding was adequate to fill the rainwater tank or not.

Pour water into downspout for test
Rainwater tank is filled

The cutover from city water source to rainwater source was easy.  First, the city water valve was turned off and the hose connected to toilet tank was switched over to the rainwater side.  Before connecting the hose to the toilet, accumulated debris (dirt and mulch) was first flushed out from the pipe that sat dormant for 2 years.  Flushing out the debris proved that the pump was working. When the water ran clear for a minute or so the hose was connected to the toilet.  I had the honor of pressing the button on the Niagara Stealth toilet for the first test and it worked!  So now, we just need to wait for the rain.

And we did get a little bit of rain in September.  Less than an inch but it probably deposited about 400 gallons in our rainwater tank.  Optimistically expecting more rain in October, we switched our toilet line from city water to the rainwater supply on October 1, 2014.  Hurray!  All done, right?  Well, not really.

Backflow Prevention


In mid-October we learned that the rainwater system project was not truly done.  Not until the paperwork is finished with the water department, anyway.  We received a call from them asking us if we had a back flow prevention device installed.  We didn’t and we hoped we didn’t have to.

Backflow prevention device is installed to protect the potable water supply.  If there is a condition on the property that has the potential for untreated water (rainwater in our case) to flow back into the water department’s supply line then a backflow prevention device must be installed near the utility’s water meter on our property.  In our case the potential exists because we have a pump that conveys rainwater to the toilets and washing machine.  If a cross connection was made to connect rainwater to city’s potable water (which we wouldn’t do because we won’t be able to flush the toilets) and the city’s water pressure dropped because a nearby fire hydrant was hit by a bus (which I’ve seen happen last year) then our non-potable rainwater could get into the city’s water supply.  It’s a very remote chance  but our water department is vigilant and have a good track record for installing backflow prevention devices.

Below is a photo of a small backflow prevention device.  Once I recognized this for what it is I started seeing them everywhere — in front of medical buildings, shopping malls, commercial buildings, schools, etc.  The presence of the backflow prevention device means there’s some potential at the property for non-potable water to get into the water supply.  Typical things that raise a red flag are radiant floor system, solar thermal system, and pump of some kind.  Some of the backflow prevention devices on commercial properties are huge — diameter of the pipe being the size of a large tree trunk.  Besides the additional cost to install the device there is an annual cost associated with having this on the property — annual inspection must be made by a certified professional who charges for such inspection.  But mostly I didn’t want this in our front yard because I didn’t want it to deter other people from doing a rainwater harvesting project like ours.  It’s a simple concept and the implementation should be simple too.

Backflow prevention device

I invited the inspector to come take a look at our installation and discussed the approach used by another site doing the same rainwater application over at the Live Oak Grange.  They have the system set up so that the rainwater lines are permanently connected to the toilet, thus eliminating the need for switching the lines back and forth between city water and rainwater.  The city water feeds the rainwater tank when the water level gets low using a float and a valve triggered by the float. ( This is just like how the toilet tank is filled using a float and a valve.)  The key to this setup is to show that there is an “air gap” between the city water supply and the rainwater tank.  

I told the inspector we will be doing the same and he agreed to this approach.  When he came back again to look at the completed setup of the “air gap” he was satisfied and signed off on the paperwork.  He’ll be making a visual inspection of the air gap on an annual basis.

Here are some photos from the installation of the air gap and testing to make sure it works.

When the water level is down the float pulls the string and the valve opens
When the water level is up the float shuts off the valve

There is an air gap of 3 inches between the valve (blue) and the top of the tank

We started using rainwater for toilet flushing on October 1, 2014.  After the big storm in December our rainwater tank was full so we switched our cold water line for the washing machine on January 5, 2015.  We haven’t noticed any difference in the quality of laundry.  So far so good!

Water Efficiency Features

August 22, 2014

In this post I will share the water efficiency features we have at Midori Haus.  The features are organized into 3 categories:  easy, moderate, and advanced.  The items in the easy category can be done for a low cost without specialized skills such as changing the shower head.  The moderate items cost a little bit more and unless you have the skills yourself, you’ll likely need to hire someone who knows what they’re doing.  For example changing out your toilet.  The advanced items require permit and competence in plumbing and you’ll need to hire a plumber.

Easy:  Sheet Mulching

Sheet mulching is a great way to manage rainwater oudoors.  It’s good for both water conservation (no need to water the lawn) and for water onsite recharge (rather than sending the rainwater down the storm drain).  Sheet mulching is easy.  First you harvest a bunch of large, sturdy cardboards from the recycling bins of stores that sell large stuff like bicycles, appliances, lawn mowers, etc.  Be sure to ask them first.  Even if it’s a waste product they’re dumping in the recycling bin the stores appreciate you for asking their permission to take the cardboards.  Once you’ve hauled the cardboards to your property (you may need to make several trips) you lay them down in the yard, overlapping the edges by 6-8 inches to block the weeds from sprouting, and spread wood chips or mulch over them.  We got our mulch from Vision Recycling.

Our primary purpose for sheet mulching was to have a low maintenance yard while we figured out what to do with landscaping.  Some folks test the soil then apply compost and soil amendment before laying down cardboard to make the soil suitable for the intended plants.  Since we didn’t know specific plants to be placed in what spot and we needed to cover a large area (about 4,000 sqft) we didn’t bother with applying compost below the cardboard.  The only thing we paid attention to was the removal of all packing tape and staples from the cardboard boxes.  This we learned years ago when we did sheet mulching at another property.  The packing tapes adhered to the cardboards lasted much longer than the cardboard itself and and over time we ended up picking up strips of plastic tape in the mulch when the carboard degraded.  It looks a bit trashy and ugly at that point so best to eliminate them before placing the cardboard down.

Heads-up:  If you plan to do sheet mulching be sure to check with your local water department for rebate availability.  We didn’t qualify for the rebate from our local water department because the criteria was removal of active water sprinklers. Since the sprinklers and pipes we dug up were not used for several years we did not get a rebate.  My friend in San Bruno recently completed sheet mulching of her yard but found out too late about the rebate.  The water department in her area offers rebate for sheet mulching but you have to apply for it before you begin your project.   Each water district offers different incentives so check with them before you embark on water saving projects at your home.

Sheet mulching is beneficial in many ways.  The obvious one is to eliminate the need to water a lawn.  In our case the unmanicured grass in the yard was plain ugly so we were happy to not water them and cover it up.  The second benefit is to avoid flooding during heavy rain because the mulch soaks up the rainwater.  In the winter a section in the backyard near the garage would flood and made it difficult to get into the garage.  This problem went away with sheet mulching.  The third benefit is to keeping our shoes clean during the rain. With heavy clay soil around our property walking on wet soil after rain resulted in having an inch of mud caked on to the bottom of our shoes.  And finally, the mulch keeps the soil underneath moist and happy.  Our orange tree seems to be doing a lot better after sheet mulching.

Here are some photos of before, during and after sheet mulching.

Before:  Backyard near the garage would flood during heavy rain.

Before:  Although we dug up old sprinkler remains we weren’t eligible for a rebate from the water department.

During:  Laying down cardboard.

During:  Wood chips delivered 

After:  Sheet mulching completed. 

Food for thought:  Did you know that the volume of water used outdoors versus indoors vary quite a bit within California?  In the interactive graph in this KQED blog you’ll see the average household water use in California broken down by indoor and outdoor use.  The average use for the state of California is 53% outdoors and 47% indoors.  In northern California, where we are, the ratio is reversed where 42% (125 gallons/day) is for outdoor and 58% (171 gallons/day) is for indoor.  Then there are further variation by water districts.  For example, when you look at a coastal city like Santa Cruz the residents have low average use of 95 gallons per day and the portion for outdoor use is small.  If you’re interested in further detail of the water use by Santa Cruz residents the Water Use Baseline Survey will provide you with interesting data such as 50% of single family homes have no turf (figure 13 page 26).

Easy:  Showerhead

Replacing the showerhead is easy.  Plumbing code requires showerheads to be 2.5 gallons per minute (GPM) or less and we all can do better than that.  We came across the Niagara line of products at the exhibitor booth at a water conservation conference we attended. Here is a photo of our well-used, hard-water-stained showerhead made by Niagara.

Niagara Bi-Max Showerhead can be set for 1 gallon per minute or 1.5 gallons per minute.  We have it set at 1 GPM and the it feels nice.  The water that hits your body is a combination of a raindrop and a fine mist and it’s surprisingly satisfying.

Easy:  Faucet

Here’s another product from Niagara to reduce water flow.  This aerator attached to the bathroom faucet and we usually have it set to the low flow setting for handwashing.  I use the higher flow rate if I’m filling a vase or a small bucket.

Niagara Tri-Max Aerator has 3 settings:  0.5 gallons per minute, 1.0 gallons per minute, and 1.5 gallons per minute.

Easy:  No Garbage Disposal

Grinding food scraps in the garbage disposal requires both electricity and water.  And you may be inclined to use lots of water to make sure the food scraps move along in the waste water pipe to prevent clogging.  But what if you didn’t send the food scraps down the sink in the first place?  It’s just as easy to trap the carrot peels and food scraps in the wire mesh and throw it into the trash can. Or placing the food scraps in the compost bin is even better.

We didn’t install garbage disposal under the sink becase we didn’t want the noise and we also wanted to save both water and electricity.  We’ve been living in Midori Haus for 18 months and I’m happy to report that we have had no problems with the food scraps clogging our pipes.  We have double containment in our kitchen sink to prevent large food particles from getting into the wastewater pipe.  It doesn’t take much effort to empty out the strainers regularly.  The basket strainer came with the sink and we got the mesh strainer at local hardware store.

If you have a garbage disposal in your kitchen sink today you can simply choose to stop using them.  Super simple, right?  But I realize that some folks are really passionate about their garbage disposal.  In the introduction section of the book, On The Grid, Scott Hueler shares a colorful narrative of his city’s (Raleigh, North Carolina) attempt to ban the garbage disposal during a drought.

Food for thought:  Have you ever taken a tour of the sewage treatment plant?  I’ve been to waste water treatment plants in Santa Cruz and Palo Alto and have taken a guided tour of the facilities.  Yes, it’s stinky.  It’s also quite fascinating.  One of the first things they do at sewage treatment plant is to scoop out solid materials to be hauled off to a landfill.  This made me think about how my personal actions affect downstream processing at the wastewater treatment plant.  By grinding your food scraps in the garbage disposal and sending it down the sewer you’re just giving the waste water treatment plant more stuff to process.  I should mention too that in my monthly utility bill that combines water, garbage, and sewer services the sewer component is the most expensive.

Moderate:  Toilets

Most homes have 1.6 gallons per flush toilets.  These are much better than the older toilets but if you want to do better you can install a dual flush toilet (2 different buttons — one for liquid waste and another for solid waste).  Or you can simply install a 0.8 GPF Niagara Stealth toilet like we did.

We have two of these toilets and they work well.

Look for rebates in your area for replacing your older toilet that used more than 1.6 gallons per flush with high efficiency toilets.  Here’s an example of a high efficiency toilet rebate in San Francisco.

Moderate:  Dishwasher

A small dishwasher uses less water than a large one.  For just the two of us this Futura Slimline Series dishwasher from Miele works really well.  It’s less than 18-inches wide but it fits dishes for 10 place settings.  It uses only 6 gallons per cycle.

Moderate:  Clothes washer

For clothes washer we chose the 24″ Bosch Axxis Plus model that uses very little water.  The manufacturer’s spec sheet says 3,904 gallons per year.  In general the front loading washers use 1/3 less water and detergent than the top loading ones.

Moderate:  Spray Rinse in Kitchen

The commercial pre-rinse assembly and faucet from Fisher delivers 1.15 GPM at 60 PSI.  It removes food from pots and pan pretty well using very little water.  We decided to use a commercial assembly rather than a residential kitchen faucet because it’s cheaper than the fancy residential models, works better, and the replacement parts will be available for a long time.  It doesn’t look bad either.

Moderate:  Laundry to Landscape Graywater

The wastewater pipe from our washing machine is connected to diverter valve that can direct the laundry wastewater from the washing machine to the landscape.

Right now the diverter valve is set to flow the laundry wastewater to the sewer.  Why?  Well, we don’t have our garden planted with all the fruit trees we want yet.  Our orange and apples trees are very mature and the roots are probably tapped into some water source.  We’ve planted lemon, plum, and pear trees a few months ago and will likely plant other fruit trees.  Once all the trees are planted we’ll lay out the irrigation pipes to direct the laundry water to the roots of the fruit trees.  I wrote about laundry to landscape when I took a workshop with LeAnne Ravinale in October 2011 showing details of an installation at another house in Santa Cruz.  You can find the post here.

While Laundry to Landscape can be done without pulling a permit in California you need to follow some guidelines.  By the way, you need to be careful about the type of laundry soap you use when you start watering your garden with your laundry wastewater.  There is a list of ingredients to avoid and you can carefully read the label of the the laundry soap at the supermarket.  But it’s much easier to refer to a list of safe products and shop from the safe list.

We have a very water efficient front loading washing machine so the amount of laundry water irrigating the landscape will be about 50-80 gallons per week for doing 6-8 loads of laundry.  If you have an older top loading washer you can direct a lot more laundry wastewater to water your garden!

Advanced:  Thinner Pipes

“What do you do between the time you turn on your shower and the time you get in?” was the question asked in the hot water heating class at PG&E.  The guy sitting next to me said he would go to the kitchen and make coffee and come back in 5 minutes because that’s how long it took for the hot water to come from the water heater to the shower.  Other people had various routines they would do while waiting for the shower to get warm.  When I told the instructor I didn’t have a routine he asked me, “So you just turn on your shower and get in?” to which I replied, “Yes, the hot water heater is next to the shower.” I took this class several years ago from Gary Klein who works in the area of water-energy nexus.  He has an interesting presentation on the topic of residential hot water distribution systems and advocated the use of structured plumbing where quick hot water would be available to every fixture with no greater energy consumption, with the target of no more than one cup of water is wasted while waiting for hot water.

The cold water flowing from the showerhead down into the drain represents the water that was sitting in the pipe between the hot water heater and the showerhead.  The longer the distance between the hot water heater and the shower the more water wasted.  The fatter the diameter of the pipe the more water wasted.  (On page 25 of Gary’s paper you’ll see the chart that represents the various lengths of the pipe that holds 1 cup of water for different diameter pipes.)  For example, the length of a 3/4-inch diameter pipe holding one cup of water is 2.5 feet long.  The length of a 3/8-inch diameter pipe holding one cup of water is 8 feet long.  So, thinner pipes means less water wasted.  In the case of the the guy in class who made coffee while waiting for his shower to get warm he had a fat pipe that ran a long distance.

I imagine some of you put a bucket in the shower to collect the cold water while waiting for the shower to get warm then use the water in the bucket to water the plants in the garden — if you do bravo!  But not everyone is that conscientious and sometimes you forget.  So, if you have the opportunity to replace your distribution plumbing in your house go for the thinner pipes which reduces water waste.

Since we replaced all the walls and the plumbing infrastructure was ripe for replacement we chose to go with thinner pipes.  At Midori Haus we have cross linked polyethylene PEX tubes conveying cold and hot water through the house.  These tubes, fast becoming the standard in residential plumbing, have several benefits.  These include flexibility that enables routing to avoid cutting and splicing, easier installation, lower cost, and more.  See this link for other benefits of PEX.  To minimize the volume of hot water sitting in the distribution pipes we used 3/8-inch PEX line between the hot water heater and fixtures.  The cold water line coming into the house to the hot water heater is a larger 3/4-inch PEX pipe.  I’ve watched our general contractor, Taylor Darling of Santa Cruz Green Builders install PEX and make various connections and it seemed straight forward.

There are concerns about the chemicals leaching from PEX.  The type of material we used (ASTM F2023 standard) has a 25 year assurance.  We filter our drinking water at the kitchen sink.  If you are concerned about this I invite you to visit this site and made a decision for yourself.

Here are some photos of the PEX lines taken during installation.

PEX lines behind the master bathroom shower

PEX expander tool used to connect the cold water line under the house

Home run PEX lines converging at central manifold in the interior wall next to the mechanical room 

To further minimize the heat loss of the hot water sitting in pipe the 3/8-inch hot water PEX lines are insulated using Therma Cell which has an R-value of 5.8.

Food for thought:  Another way to minimize hot water waste at the faucet or the shower is to use a recirculating pump in the hot water line.  This can be installed using a timer that circulates hot water on a programmable schedule or have it operate manually by pressing a button.  We decided not to use a recirculating pump at Midori Haus because our hot water lines to the showers are relatively short and we didn’t want to use electricity for this purpose.

Advanced:  Rainwater for indoor non-potable use

Many people collect rainwater from the roof of their house and store them in a tank for watering their garden.  This is not difficult and many people take this on a s a DIY project by referring to online resources or by attending community workshops.  American Rainwater Catchment Systems Association (ARCSA) is a good resource for workshops and webinars on rainwater harvesting.

A more complex use of rainwater is to put indoor plumbing in place to for non-drinking purposes.  Toilet flushing and laundry are the two large components of indoor residential water use according to this diagram from East Bay Municipal Utility District.

If we replace the water used used for toilet flushing and clothes washing with rainwater we can reduce the demand on our local water utility.  We knew we wanted to use rainwater for toilet flushing laundry.  But 3 years ago when we were in the midst of designing the details of Midori Haus we had a difficult time finding a resource to design and install a rainwater system for toilet flushing and laundry for a reasonable cost.  Back then this was not part of the plumbing code so the specialist that designed and installed these systems had to go through a cumbersome process to get the system approved for a permit to satisfy the building department and the health department.  People who had such systems installed spent around $30,000 and that was too much for us.  So, in anticipation of having the rainwater for toilet flushing and laundry implemented in a future stage we had the toilets and washer dual plumbed — one line for city water and another line for rainwater.  This will allow us to simply unscrew the hose that connects the toilet (or the washer) to the city water line and connect it with the rainwater line when the system is available.  There is no cross connection in this approach — the rainwater and city water never mixes.  Here are some photos of the internal plumbing.

                              Rainwater line into the house

Dual plumbing for toilet

Spigots for washing machine

Note:  There is a difference between rainwater and gray water.  Gray water is re-using the water from your sink, shower, and washing machine by making changes in the sewer plumbing so that you can direct the waste water to your landscape or to the sewer.  Rainwater is harvesting the rain water that falls on your property and using them for irrigating your landscape or using them for non-potable use indoors.

Exterior details of the rainwater harvesting system installed by AquaSoleil will be covered in the next post.