Water Efficiency Features

August 22, 2014

In this post I will share the water efficiency features we have at Midori Haus.  The features are organized into 3 categories:  easy, moderate, and advanced.  The items in the easy category can be done for a low cost without specialized skills such as changing the shower head.  The moderate items cost a little bit more and unless you have the skills yourself, you’ll likely need to hire someone who knows what they’re doing.  For example changing out your toilet.  The advanced items require permit and competence in plumbing and you’ll need to hire a plumber.

Easy:  Sheet Mulching

Sheet mulching is a great way to manage rainwater oudoors.  It’s good for both water conservation (no need to water the lawn) and for water onsite recharge (rather than sending the rainwater down the storm drain).  Sheet mulching is easy.  First you harvest a bunch of large, sturdy cardboards from the recycling bins of stores that sell large stuff like bicycles, appliances, lawn mowers, etc.  Be sure to ask them first.  Even if it’s a waste product they’re dumping in the recycling bin the stores appreciate you for asking their permission to take the cardboards.  Once you’ve hauled the cardboards to your property (you may need to make several trips) you lay them down in the yard, overlapping the edges by 6-8 inches to block the weeds from sprouting, and spread wood chips or mulch over them.  We got our mulch from Vision Recycling.

Our primary purpose for sheet mulching was to have a low maintenance yard while we figured out what to do with landscaping.  Some folks test the soil then apply compost and soil amendment before laying down cardboard to make the soil suitable for the intended plants.  Since we didn’t know specific plants to be placed in what spot and we needed to cover a large area (about 4,000 sqft) we didn’t bother with applying compost below the cardboard.  The only thing we paid attention to was the removal of all packing tape and staples from the cardboard boxes.  This we learned years ago when we did sheet mulching at another property.  The packing tapes adhered to the cardboards lasted much longer than the cardboard itself and and over time we ended up picking up strips of plastic tape in the mulch when the carboard degraded.  It looks a bit trashy and ugly at that point so best to eliminate them before placing the cardboard down.

Heads-up:  If you plan to do sheet mulching be sure to check with your local water department for rebate availability.  We didn’t qualify for the rebate from our local water department because the criteria was removal of active water sprinklers. Since the sprinklers and pipes we dug up were not used for several years we did not get a rebate.  My friend in San Bruno recently completed sheet mulching of her yard but found out too late about the rebate.  The water department in her area offers rebate for sheet mulching but you have to apply for it before you begin your project.   Each water district offers different incentives so check with them before you embark on water saving projects at your home.

Sheet mulching is beneficial in many ways.  The obvious one is to eliminate the need to water a lawn.  In our case the unmanicured grass in the yard was plain ugly so we were happy to not water them and cover it up.  The second benefit is to avoid flooding during heavy rain because the mulch soaks up the rainwater.  In the winter a section in the backyard near the garage would flood and made it difficult to get into the garage.  This problem went away with sheet mulching.  The third benefit is to keeping our shoes clean during the rain. With heavy clay soil around our property walking on wet soil after rain resulted in having an inch of mud caked on to the bottom of our shoes.  And finally, the mulch keeps the soil underneath moist and happy.  Our orange tree seems to be doing a lot better after sheet mulching.

Here are some photos of before, during and after sheet mulching.

Before:  Backyard near the garage would flood during heavy rain.

Before:  Although we dug up old sprinkler remains we weren’t eligible for a rebate from the water department.

During:  Laying down cardboard.

During:  Wood chips delivered 

After:  Sheet mulching completed. 

Food for thought:  Did you know that the volume of water used outdoors versus indoors vary quite a bit within California?  In the interactive graph in this KQED blog you’ll see the average household water use in California broken down by indoor and outdoor use.  The average use for the state of California is 53% outdoors and 47% indoors.  In northern California, where we are, the ratio is reversed where 42% (125 gallons/day) is for outdoor and 58% (171 gallons/day) is for indoor.  Then there are further variation by water districts.  For example, when you look at a coastal city like Santa Cruz the residents have low average use of 95 gallons per day and the portion for outdoor use is small.  If you’re interested in further detail of the water use by Santa Cruz residents the Water Use Baseline Survey will provide you with interesting data such as 50% of single family homes have no turf (figure 13 page 26).

Easy:  Showerhead

Replacing the showerhead is easy.  Plumbing code requires showerheads to be 2.5 gallons per minute (GPM) or less and we all can do better than that.  We came across the Niagara line of products at the exhibitor booth at a water conservation conference we attended. Here is a photo of our well-used, hard-water-stained showerhead made by Niagara.

Niagara Bi-Max Showerhead can be set for 1 gallon per minute or 1.5 gallons per minute.  We have it set at 1 GPM and the it feels nice.  The water that hits your body is a combination of a raindrop and a fine mist and it’s surprisingly satisfying.

Easy:  Faucet

Here’s another product from Niagara to reduce water flow.  This aerator attached to the bathroom faucet and we usually have it set to the low flow setting for handwashing.  I use the higher flow rate if I’m filling a vase or a small bucket.

Niagara Tri-Max Aerator has 3 settings:  0.5 gallons per minute, 1.0 gallons per minute, and 1.5 gallons per minute.

Easy:  No Garbage Disposal

Grinding food scraps in the garbage disposal requires both electricity and water.  And you may be inclined to use lots of water to make sure the food scraps move along in the waste water pipe to prevent clogging.  But what if you didn’t send the food scraps down the sink in the first place?  It’s just as easy to trap the carrot peels and food scraps in the wire mesh and throw it into the trash can. Or placing the food scraps in the compost bin is even better.

We didn’t install garbage disposal under the sink becase we didn’t want the noise and we also wanted to save both water and electricity.  We’ve been living in Midori Haus for 18 months and I’m happy to report that we have had no problems with the food scraps clogging our pipes.  We have double containment in our kitchen sink to prevent large food particles from getting into the wastewater pipe.  It doesn’t take much effort to empty out the strainers regularly.  The basket strainer came with the sink and we got the mesh strainer at local hardware store.

If you have a garbage disposal in your kitchen sink today you can simply choose to stop using them.  Super simple, right?  But I realize that some folks are really passionate about their garbage disposal.  In the introduction section of the book, On The Grid, Scott Hueler shares a colorful narrative of his city’s (Raleigh, North Carolina) attempt to ban the garbage disposal during a drought.

Food for thought:  Have you ever taken a tour of the sewage treatment plant?  I’ve been to waste water treatment plants in Santa Cruz and Palo Alto and have taken a guided tour of the facilities.  Yes, it’s stinky.  It’s also quite fascinating.  One of the first things they do at sewage treatment plant is to scoop out solid materials to be hauled off to a landfill.  This made me think about how my personal actions affect downstream processing at the wastewater treatment plant.  By grinding your food scraps in the garbage disposal and sending it down the sewer you’re just giving the waste water treatment plant more stuff to process.  I should mention too that in my monthly utility bill that combines water, garbage, and sewer services the sewer component is the most expensive.

Moderate:  Toilets

Most homes have 1.6 gallons per flush toilets.  These are much better than the older toilets but if you want to do better you can install a dual flush toilet (2 different buttons — one for liquid waste and another for solid waste).  Or you can simply install a 0.8 GPF Niagara Stealth toilet like we did.

We have two of these toilets and they work well.

Look for rebates in your area for replacing your older toilet that used more than 1.6 gallons per flush with high efficiency toilets.  Here’s an example of a high efficiency toilet rebate in San Francisco.

Moderate:  Dishwasher

A small dishwasher uses less water than a large one.  For just the two of us this Futura Slimline Series dishwasher from Miele works really well.  It’s less than 18-inches wide but it fits dishes for 10 place settings.  It uses only 6 gallons per cycle.

Moderate:  Clothes washer

For clothes washer we chose the 24″ Bosch Axxis Plus model that uses very little water.  The manufacturer’s spec sheet says 3,904 gallons per year.  In general the front loading washers use 1/3 less water and detergent than the top loading ones.

Moderate:  Spray Rinse in Kitchen

The commercial pre-rinse assembly and faucet from Fisher delivers 1.15 GPM at 60 PSI.  It removes food from pots and pan pretty well using very little water.  We decided to use a commercial assembly rather than a residential kitchen faucet because it’s cheaper than the fancy residential models, works better, and the replacement parts will be available for a long time.  It doesn’t look bad either.

Moderate:  Laundry to Landscape Graywater

The wastewater pipe from our washing machine is connected to diverter valve that can direct the laundry wastewater from the washing machine to the landscape.

Right now the diverter valve is set to flow the laundry wastewater to the sewer.  Why?  Well, we don’t have our garden planted with all the fruit trees we want yet.  Our orange and apples trees are very mature and the roots are probably tapped into some water source.  We’ve planted lemon, plum, and pear trees a few months ago and will likely plant other fruit trees.  Once all the trees are planted we’ll lay out the irrigation pipes to direct the laundry water to the roots of the fruit trees.  I wrote about laundry to landscape when I took a workshop with LeAnne Ravinale in October 2011 showing details of an installation at another house in Santa Cruz.  You can find the post here.

While Laundry to Landscape can be done without pulling a permit in California you need to follow some guidelines.  By the way, you need to be careful about the type of laundry soap you use when you start watering your garden with your laundry wastewater.  There is a list of ingredients to avoid and you can carefully read the label of the the laundry soap at the supermarket.  But it’s much easier to refer to a list of safe products and shop from the safe list.

We have a very water efficient front loading washing machine so the amount of laundry water irrigating the landscape will be about 50-80 gallons per week for doing 6-8 loads of laundry.  If you have an older top loading washer you can direct a lot more laundry wastewater to water your garden!

Advanced:  Thinner Pipes

“What do you do between the time you turn on your shower and the time you get in?” was the question asked in the hot water heating class at PG&E.  The guy sitting next to me said he would go to the kitchen and make coffee and come back in 5 minutes because that’s how long it took for the hot water to come from the water heater to the shower.  Other people had various routines they would do while waiting for the shower to get warm.  When I told the instructor I didn’t have a routine he asked me, “So you just turn on your shower and get in?” to which I replied, “Yes, the hot water heater is next to the shower.” I took this class several years ago from Gary Klein who works in the area of water-energy nexus.  He has an interesting presentation on the topic of residential hot water distribution systems and advocated the use of structured plumbing where quick hot water would be available to every fixture with no greater energy consumption, with the target of no more than one cup of water is wasted while waiting for hot water.

The cold water flowing from the showerhead down into the drain represents the water that was sitting in the pipe between the hot water heater and the showerhead.  The longer the distance between the hot water heater and the shower the more water wasted.  The fatter the diameter of the pipe the more water wasted.  (On page 25 of Gary’s paper you’ll see the chart that represents the various lengths of the pipe that holds 1 cup of water for different diameter pipes.)  For example, the length of a 3/4-inch diameter pipe holding one cup of water is 2.5 feet long.  The length of a 3/8-inch diameter pipe holding one cup of water is 8 feet long.  So, thinner pipes means less water wasted.  In the case of the the guy in class who made coffee while waiting for his shower to get warm he had a fat pipe that ran a long distance.

I imagine some of you put a bucket in the shower to collect the cold water while waiting for the shower to get warm then use the water in the bucket to water the plants in the garden — if you do bravo!  But not everyone is that conscientious and sometimes you forget.  So, if you have the opportunity to replace your distribution plumbing in your house go for the thinner pipes which reduces water waste.

Since we replaced all the walls and the plumbing infrastructure was ripe for replacement we chose to go with thinner pipes.  At Midori Haus we have cross linked polyethylene PEX tubes conveying cold and hot water through the house.  These tubes, fast becoming the standard in residential plumbing, have several benefits.  These include flexibility that enables routing to avoid cutting and splicing, easier installation, lower cost, and more.  See this link for other benefits of PEX.  To minimize the volume of hot water sitting in the distribution pipes we used 3/8-inch PEX line between the hot water heater and fixtures.  The cold water line coming into the house to the hot water heater is a larger 3/4-inch PEX pipe.  I’ve watched our general contractor, Taylor Darling of Santa Cruz Green Builders install PEX and make various connections and it seemed straight forward.

There are concerns about the chemicals leaching from PEX.  The type of material we used (ASTM F2023 standard) has a 25 year assurance.  We filter our drinking water at the kitchen sink.  If you are concerned about this I invite you to visit this site and made a decision for yourself.

Here are some photos of the PEX lines taken during installation.

PEX lines behind the master bathroom shower

PEX expander tool used to connect the cold water line under the house

Home run PEX lines converging at central manifold in the interior wall next to the mechanical room 

To further minimize the heat loss of the hot water sitting in pipe the 3/8-inch hot water PEX lines are insulated using Therma Cell which has an R-value of 5.8.

Food for thought:  Another way to minimize hot water waste at the faucet or the shower is to use a recirculating pump in the hot water line.  This can be installed using a timer that circulates hot water on a programmable schedule or have it operate manually by pressing a button.  We decided not to use a recirculating pump at Midori Haus because our hot water lines to the showers are relatively short and we didn’t want to use electricity for this purpose.

Advanced:  Rainwater for indoor non-potable use

Many people collect rainwater from the roof of their house and store them in a tank for watering their garden.  This is not difficult and many people take this on a s a DIY project by referring to online resources or by attending community workshops.  American Rainwater Catchment Systems Association (ARCSA) is a good resource for workshops and webinars on rainwater harvesting.

A more complex use of rainwater is to put indoor plumbing in place to for non-drinking purposes.  Toilet flushing and laundry are the two large components of indoor residential water use according to this diagram from East Bay Municipal Utility District.

If we replace the water used used for toilet flushing and clothes washing with rainwater we can reduce the demand on our local water utility.  We knew we wanted to use rainwater for toilet flushing laundry.  But 3 years ago when we were in the midst of designing the details of Midori Haus we had a difficult time finding a resource to design and install a rainwater system for toilet flushing and laundry for a reasonable cost.  Back then this was not part of the plumbing code so the specialist that designed and installed these systems had to go through a cumbersome process to get the system approved for a permit to satisfy the building department and the health department.  People who had such systems installed spent around $30,000 and that was too much for us.  So, in anticipation of having the rainwater for toilet flushing and laundry implemented in a future stage we had the toilets and washer dual plumbed — one line for city water and another line for rainwater.  This will allow us to simply unscrew the hose that connects the toilet (or the washer) to the city water line and connect it with the rainwater line when the system is available.  There is no cross connection in this approach — the rainwater and city water never mixes.  Here are some photos of the internal plumbing.

                              Rainwater line into the house

Dual plumbing for toilet

Spigots for washing machine

Note:  There is a difference between rainwater and gray water.  Gray water is re-using the water from your sink, shower, and washing machine by making changes in the sewer plumbing so that you can direct the waste water to your landscape or to the sewer.  Rainwater is harvesting the rain water that falls on your property and using them for irrigating your landscape or using them for non-potable use indoors.

Exterior details of the rainwater harvesting system installed by AquaSoleil will be covered in the next post.

Rainwater for Indoor Non-potable Use

Yay!  We got the permit for our rainwater harvesting system for indoor non-potable use.  Up until now we’ve focused our attention on thermal comfort and energy consumption in our home.  Now we shift our attention to water — the precious natural resource we can’t live without.  In this post I’ll share the background of how we got here on our green journey and why it’s important.

Most of you know that California is in the middle of a drought right now.  When I read this article in New York Times I was reminded that residents of Santa Cruz have been practicing water conservation for a long time, ever since the drought in the 1980’s.  The effect of the conservation effort is reflected in the current volume supplied by the local water district:  30% less today than it was in 1987.  Unlike San Francisco and nearby cities in the Bay Area, Santa Cruz is not connected to the California Aqueduct and we don’t have water piped in from remote sources.  Our drinking water comes from local sources and residents here are not a fan of desalinization so we make do with less water per person.  On May 1, 2014, new rationing allotments and progressive surcharges went into effect.  For single family homes this means 249 gallons per day (assuming 4 people living in the house) or 62 gallons per person per day.  For the 2 residents of Midori Haus the allotment comes out to 124 gallons per day.

Currently we are using well below the allotment amount.  Let me show you our recent water bill.  By the way, I used to simply file away the water bill after I paid it and haven’t paid much attention to the data.  The current drought condition got me curious about typical usage volume and for what purpose.  If you’re also curious have a look at the middle portion of this page on Sierra Club’s website that shows the breakdown of household water use.  I’m sharing my utility bill here with you as food for thought.  I invite you to pull out or download your water bill and simply notice how much water your household uses.

Last month (May 2014) we used an average of 52 gallons per day (only 43% of our allotment) and our annual average water consumption was 82 gallons per day (66% of our allotment).  I’m pretty happy with our our low water usage.  And we’re not super frugal about our behavior.  We do about 8 loads of laundry per week, run the dishwasher almost daily, prepare 2-3 meals at home daily, and I’ll even confess that I’ve never outgrown the teenage syndrome of long showers.  The main reason why we have low water usage is because we don’t have a lawn and most of our trees have tapped into the water table under the soil so we don’t water them.  It also helps that we have super efficient water appliances and fixtures in the house.

In a separate post I’ll show you the different components of water saving features we have in the house today.  For now let me explain what we mean by non-potable use of rainwater catchment system.

Non-potable means not suitable for drinking.  So what are the uses of non-potable water inside the house?  Toilet flushing and laundry.  At this point I invite you to pause and think about the water used to flush the toilet.  Water is extracted from the ground, river, or reservoir then treated to make it safe for drinking at the water treatment plant.  Then the clean drinking water is pumped through the network of pipes from the water treatment plant to your home.  When you press the button or the handle on your toilet to flush the pee or poo you are using clean drinking water to transport them to the sewage treatment plant or into your septic tank.  Hmm.  Seems like a lot of energy and resources are expended to flush the toilet.  So, what if you collected a portion of the rainwater falling on your property and used that instead to flush the toilet?  That’s what we’ll being doing.

The notion of using rainwater to flush toilets and doing laundry is no longer exotic.  The indoor non potable uses of rainwater is spelled out in the California Plumbing Code now.  Chapter 17 of the 2013 California Plumbing Code describe the requirements for non-potable rainwater catchment system.  Note that even if it is part of the plumbing code the building officials doing the plan check may not be as familiar with this yet so they may grace you with extra scrutiny.  For us it wasn’t an over-the-counter permit and it cost us over $900 for the permit.  Let’s hope that the permit process will be faster and cheaper as it becomes mainstream.

How did we get the inspiration to do this?  About 3 years ago we visited the dormitory at the Green Gulch Farm at the San Francisco Zen Center for a Passive House Tour.  It was there where we first saw the installation of rainwater harvesting system to flush toilets and to do laundry.  We’ve been wanting to do this at Midori Haus but the details of the permitting process wasn’t clear when we were in our home remodel construction phase.  So had some pre-plumbing put in place and we decided to shift the implementation of the rainwater system to a later phase.  (Remember, this was before the 2013 California Plumbing Code update).  When we learned about a local program to evaluate the water quality and cost effectiveness of non-potable rainwater harvesting system for indoor use we jumped on it.  We filed our application with Ecology Action, a local environmental nonprofit organization, back in October 2013.  In January 2014 we were delighted to hear that we’ve been selected as one of the 7 participants of the study.  The rebate and technical assistance of this program is funded through the Proposition 84 Monterey Bay Regional LID Planning and Incentives Program grant.  Sherry Lee Bryan of Ecology Action has been instrumental in providing technical assistance.  Thanks Sherry!

Some of you may say, “Why worry about the small reduction in household water use when the largest consumer of water is electric utilities and agriculture?”  Well, if you’re looking at the aggregate data for the country and if you are in a position to do something about it then by all means please focus your efforts in those areas.  I am not in such position and as a homeowner living in an area where we rely on local watershed for our drinking water I’m doing my part to save water.

Curiosity tidbit:  Water is the 2nd largest chunk of spending by our city government (Santa Cruz).

Next month Jon Ramsey and his crew from AquaSoleil will be installing a green 4,995 gallon tank in the corner of our yard along with the agricultural grade pump. They’ll make the necessary connections to the plumbing and the system will be tested.  Then we wait for the rain. It won’t be until we get a good storm or two to fill the tank to see this system in action.  This could be as early as September (wishful thinking) or as late as November (more likely the case).

I will share the photos and notes of the system after it’s installed in July.

Keeping Cool During Heat Wave

We continue to be very happy with our Passive House.

Last week we had a bit of heat wave here.  It was unusual for Santa Cruz to have 3 consecutive days of temperatures in the mid to high nineties.  The chart below show the daily high and low temperatures (in Fahrenheit) in our area.  The Weather Cat weather station is located just 2 miles away from Midori Haus and is in a similar residential area so it provides good representative historical weather data for us.

What was really unusual about the heat wave last week was that Santa Cruz was about 10 degrees warmer than San Jose.  Normally it’s the opposite.  Have a look at this map below.  Even if Santa Cruz is south of San Jose the cool ocean temperature keeps the area mild and comfortable.  So I was surprised on Thursday last week when we drove back from Berkeley to see the temperature sensor on my car showing 96 degrees in Santa Cruz when it was only 85 degrees in San Jose. 

When we got home and stepped into the house it felt comfortable.  And we have no air conditioning.  Because of the super insulation and air tightness of the house the temperature inside the house stayed in the mid seventies during the entire time.  Here is an example of the temperature reading inside the house showing 23-28 degrees cooler than the outside.

Plotting the periodic temperature readings on this graph you’ll notice that the internal temperature stays in a narrow band while the external temperature swings wildly.

While passive house dramatically retards the heat transfer from the outside to inside (during summer) and from the inside to the outside (during winter) it does take a little bit of conscious action by the homeowner to optimize the comfort.  Let me show you what I mean.

First is shading.  Our deck that extends to the back yard faces south.  This is great in the winter because the 2 rooms facing south receive lots of good solar heat gain when it’s cold and the sun angle is low.  During the summer we want to keep the sun out.  So on Wednesday evening Kurt took out the canvas shade cloth and installed them over the arbor.  Originally we had intended to grow some plants to provide natural shading, perhaps grapes or kiwi.  But we chose not to go down that path because the shade cloth provides us with more flexibility.  After the first summer we decided to keep these shade cloth as a permanent seasonal solution rather than rely on plants because it’s easier to maintain.  Here’s a picture of that.

 Another part of the shading is inside the house.  We have these roller shades installed over the windows.  The ones on the south side of the house are all made of light-blocking thicker material we got from Advanced Blind & Shades,  and they are manufactured locally.

Then there is the setting on the heat recovery ventilator (HRV).  To minimize bringing in excess heat during the heat wave we set the control on the Zehnder ComfoAir 350 HRV to “A” during the day to reduce the ventilation flow down to 23.5 cfm from the normal 95 cfm at “2” setting.

The Zehnder ComfoAir 350, as with other heat recovery ventilators, has the ability to perform passive night time cooling in climates where hot daytime summer temperatures are followed by cool evening temperatures. These are climates in which one would normally open the windows at night. 
Using the HRV “Summer Bypass Mode” allows all the benefit of night time cooling with the windows the added benefit of retaining the filtration of air introduced into the home interior. It allows for a cooling to a precise user selected set point and then resumes its temporarily defeated heat exchange function.

Finally, we open the windows and let the cool air in during early morning.  As you’ve seen from the daily low temperature in from the Weather Cat table above it gets nice and cool overnight.  Typically in the mid to high fifties even during the heat wave.  This really helps to reset the internal temperature before the day heats up again.

By the way, this night or early morning cooling works because the ocean temperature is pretty constant and cool throughout the year.  The table below is the average ocean water temperature from NOAA.  You can see from the table that the water temperature just a mile away from our house is abut 56 degrees Fahrenheit, plus or minus 3 degrees.  Once the sun goes down the cool ocean water cools the air so the overnight temperature is consistently cool.  That’s why homes in Santa Cruz don’t have air conditioning.

Because we don’t have air conditioning we don’t use extra electricity during hot weather.  Our electricity usage continues to stay pretty low during the heat wave of May 13-15, 2014.  Below is the screen shot from PG&E, our local utility, showing our electricity usage for the current month. 

We are happy to be comfortable in our Passive House that uses very little energy.

How Much Energy Did We Use In Our First Year?

About one year ago I cut off 30-inches of my hair
and donated the half-pound of hair to Locks of Love, an
organization that makes wigs for children.  I’ve done this a few times
before and it makes me feel good.  In the past friends would often ask me,
“How’s your house project coming along?” and at times it seemed to go
on forever.  So at one point I started telling everyone, “You’ll know
when it’s done because I’ll cut off my hair and donate them.  If you see
me with short hair that means the house is done!”  So I was quite
happy when I had this photo taken because it meant the house was done and I
didn’t need the extra insulation to keep me warm.
Now that we’ve been living in Midori Haus for one
year it’s time we share our energy data for the first year of occupancy.
 You might recall from my previous post where we compared our energy
data for the first 8 months in Midori Haus with the energy data from the
slightly smaller condo we used to live in.  We were pleased with the
comparison of spring-summer data where our total energy use at Midori Haus
proved to be much lower than the smaller condo.  Now that we have the
energy data for the winter season it’s even better.   Let me show you some
graphs.

If you are a PG&E customer, the above graphs
will be familiar to you.  You can log into your account at pge.com and
select the “My Usage” tab to track, compare, and monitor your energy
usage.  They do a nice job of comparing your energy usage with similar
homes in the area.  Similar homes in the context of Midori Haus is 100
homes with similar square footage (1560 in our case) within half-mile radius
that are heated by natural gas.  At Midori Haus we let the sun do the
warming most of the time but when the sun is not shining the gas boiler
provides make-up heat for the hot water tank and the hot water warms the house.
 Since there is not a category for “mostly sun-heated house” we
technically fall into the category of “heated by natural gas.”

In this past year (March 1, 2013 through February
28, 2014) we used a lot less energy than similar homes.  The total energy
use at Midori Haus was 4,334 kWh
compared to 19,596 kWh for similar homes.  Our Midori Haus used 2,869 kWh
of electricity and a scant 50 therms (this is equivalent to 1,465 kWh) of
natural gas while similar homes used 5,118 kWh of electricity and 494 therms
(this is equivalent to 14,478 kWh) of natural gas.  To put it in another
way, Midori Haus used only 22% of the total energy used by similar homes in the
past year. 

By the way, we were comfortable inside and we do
not have PV (solar electric) to offset our electricity usage.  We plan to
do so in the future but it was important for us to start from the most
efficient house before we put in PV.
This next graph is very validating.  We’re
fortunate to have copies of the energy bills from the prior owner of the house.
 The seller was friendly and ordered PG&E to send copies of the past
energy bill to us for the years 200 and 2006.  Back then there were 3 elderly
occupants in the house and they used gas furnace to heat the house and perhaps some electric space heating too.  Their energy bill from March
2005 through February 2006 is a good basis of comparison with our first year of
post-retrofit occupancy at Midori Haus because many things about the house is
the same:  same square footage, same foundation, mostly same framing, same
floor, same roof, and we kept the original built-in-furniture (dining room
buffet) in place.  So the reduction in energy use that you see below represents
the performance of the house before (without any insulation or air sealing) and
after (super-insulation, extreme airtightness, minimizing thermal bridges, heat
recovery ventilator, low energy lighting, and low energy appliances).  

The prior occupant used 21,928 kWh of energy in one
year.  Midori Haus used 4,334 kWh of energy in one year.  That is
80% reduction in energy use for the same house!
 And Midori Haus stays
in a comfortable temperature range year round with good indoor air quality.
 Passive House works!

Digging further into gas usage I wanted to see if
there is a correlation between rain and gas usage.  So I overlaid the our
daily natural gas usage with rainfall.  It’s a bit challenging to see the
details but you’ll notice that the when there is rain (blue column) the natural
gas (red column) follows close by.  This confirms that gas boiler turns on
if the sun is not shining.  The little blips of gas you see in the summer
months represents outdoor barbecue use.  We have natural gas plumbed to
the barbecue on the deck.
The source of rain data is from a local weather
station that I found on the weather underground site.  The Weather Cat station
is located just 2 miles away from Midori Haus so it’s a good representative of
the outdoor condition for the past year.  Below is a graph of the daily
high and low temperature.  What you will see below is that there is always
about 10-30 degrees Fahrenheit temperature difference between the daily high
and daily low.  Because of this diurnal swing in the temperature we don’t
need to have air conditioning during the summer because the house will cool off
at night if we simply open the windows for an hour or so.  

I now present to you a simple conclusion:  Passive house works.  Up until now we’ve been telling everyone, “Once we have a house built to Passivhaus standard we will use 80% less
energy than similar homes.”  Now we can actually show the data where
we have used 80% less energy than similar homes.  Don’t you want your home to be
passive house too?  :)

What’s New? What’s Old?

“Is this part of the original house?” is one of the questions people ask when they visit Midori Haus.  We feel complimented when people ask that question because we did put fair amount of effort into re-using materials to give it the look and feel of a vintage house that was originally built in 1922.  When we didn’t have any specific old looking items to re-use we bought new items that were made to look in the old style.

An example of this is the push button switch for the lights.  The house did not have push button switches when we bought it in 2010 but we are pretty sure that the orignal house did.  So to give it the original look we bought push button switches and switch plates in oil-rubbed bronze finish from Rejuvenation in Berkeley.

Most are simple on/off switches where you press the top button to turn lights on.  To turn the lights off you press the bottom button.  Some of the switches have a dimming function where you press the bottom button for on/off and the top is an adjustable dial to control the light intensity.  We chose to use these antique looking switches for pure decorative purposes.  There are no energy efficiency advantages.

Let’s look at the hallway bathroom door for a good mixture of old and new items.  The frosted glass on white door with the glass door knob has a vintage look.  When friends saw this door before the renovation they would say, “That looks like the door in my grandmother’s old house,” or “My basement door in my old bungalow has a door just like that.”

 We added the stained glass window above the door to let more light into the hallway.  People often perceive this to old but we got this new from The Bright Spot.

The door, the knob and the trims are original with fresh paint.

 We kept the built-in storage unit in the hallway.  These front got some fresh paint and the inside was simply cleaned.  It smells of old wood when you open the drawers and it’s part of the charm.

Most of the floor is original.  We removed the floor coverings (tile, carpet, linoleum) and had the original wood floors refinished.

The windows on the front of the house retained the same positions and size.  The triple-pane, Argon-filled fiberglass windows have a much better performance than the old single pane leaded window.

We did re-use the trims around the windows.  Santa Cruz Green Builders did a great job of matching the wood covering the deep window sill with the original window trims.

Notice the patched marks of nail holes on the window trim.  This is evidence of prior homeowners  installing curtain rods multiple times on this window trim.

 

  The mudroom bench and cabinets are new.  This practical set of built-in furniture was made by Loughridge Cabinets in Scotts Valley.  When you walk into the mudroom/kitchen area from the side door you can park your groceries on the bench, hang your hat and coat on the hook, and sit on the bench to take your shoes off.

Speaking of the mudroom, we did use a piece of the old mudroom in our new kitchen.  The breadboard on the wall was re-used on the breakfast bar in the kitchen.


In our old kitchen the gas water heater was next to the stove, strapped onto the wall.  The gas stove and the water heater shared a flue going up through the ceiling to exhaust above the roof.

 

As you enter the front door you’ll see this tidy shoes storage to your right.  We ask all visitors to take their shoes off in our house and this is one of the places where you can store them.

 

Also made by Loughridge Cabinets, the concept of the Japanese “getabako” is expressed in the arts and crafts style.This is built back into the wall and protrudes through the dining room. In the dining room the back side of the shoes storage cabinet looks like a nice stand.

 The buffet is the original built-in furniture that stayed in place during construction.  It was covered up for 13 months while the crew worked around it.

French door between the dining room and kitchen is also original piece of the house.

 Finally, I added a touch of Japanese influence in this arts and crafts house by re-using my other’s old kimono as cushion covers.

Solar Thermal System

December 6, 2013

You’ve got to be careful if you don’t know where you’re going because you might not get there.
– Yogi Berra

It took us a long time to decide on the system to provide hot water for the house.  Partly because we were going through a steep learning curve but mostly because the destination we set out for was somewhat broad.  It was analogous to going on a road trip by having the target destination specified with just the city name but not the specific street or the address.  So we were very careful because there were were many paths to get there and the recommendations from various experts did not converge.  Each expert we spoke with had a different take on the path and each one of them had a very strong opinion. We were so flummoxed that we stopped construction for 2 months while we sorted this out.  One lesson we learned was that there are many different ways to achieve water heating and you need to decide on the right solution for your situation.  There is no silver bullet.  Another lesson is “How you frame the question influences the solution,” and finally,”The clearer the goal, the clearer the path to the destination.”  I will spare you the drama of this journey and will instead present the journey in a summary fashion broken down into 4 phases – (1) Requirements, (2) Design, (3) Installation, and (4) Results Measured.  Before we embark on this summary journey, take a peek at the finished mechanical room.

(1) Requirements

The broadest statement of our goal was to “Have a hotwater system that minimizes the carbon footprint for our draw profile.” Now let’s break this down into 2 parts – draw profile and carbon footprint.

The “draw profile” or how we use hot water can be categorized into 3 parts.  First is the day-to-day use of washing hands (short draw) and showers/baths (long draw).  The second part is the hot water demand from appliances, specifically dishwasher and washing machine.  Both of our appliances (Miele Futura Dimension dishwasher and Bosch Axxis+ clothes washer) are quite efficient in their water usage and have their own water heating elements built in.  This means the warmer the temperature of the incoming water, the less energy it will take to heat the water to meet their program cycle.  The third part of our draw profile, the ofuro or soaking tub, represents the ultra long draw.  You see, one of the outcomes I wanted from Midori Haus was to have a par-boiled experience of soaking up to my chin in hot water that was at least 110F degrees.  The soaking tub we selected (MTI Yubune #77) has a capacity of 155 gallons.  This ultra long draw is not an everyday event but a random, once in a while event that didn’t fit into the average household hotwater draw profile.  This is a luxury behavior we decided to keep within scope to promote the happiness and well-being of the occupants of the house.

You may ask, “Why do you want to minimize carbon footprint?”  The simple answer is this:  Because we want to do something tangible in our personal space we control that reduces impact on climate change.  “OK, that’a a noble goal,” you might say, “and tell me how your choice in water heating system affects climate change.” Well, you can heat water at home by different means.  The sun can directly heat the water using the solar thermal system.  Electricity can heat the water using heat pump technology.  Gas boiler can heat the water.  Each approach has pros and cons.  The most important outcome we desire is to minimize the use of source energy at power plants.  Why?

  • Unless you live off the grid (i.e. not connected to the utility infrastruture where you produce electricity at your home and having a battery storage system to power your house when the sun is not shining) you’re getting your electricity from your utility company.  Should you be inclined to watch an entertaining and informative video on electricity for 5 minutes, have a look at Energy 101: Electricity Generation.
  • You’ll note from the video that the electricity power plant is a big steam engine that turns the turbine which spins the magnet to produce electricity.  The amount of energy needed to heat the big steam engine is about 3 times the amount of electricity produced.  If you have the appetite to consume mathematical formulas that explain the Rankine cycle and the efficiency of power cycles I invite you to visit Thermopedia.  There are different ways of turning the turbine (dams at hydro electric plant, wind farm, burning coal, nuclear) and in the worst case scenario for every 1 unit of electricity that reaches your home 3 units of energy was burnt at the source (power plant).  So, if we minimize the use of electricity at home including water heating we minimize the carbon emissions at the power plant and reduce our impact to climate change.

With the focus on minimizing source energy, we refined our requirement further by selecting solar thermal system with a tiny solar electric PV panel to avoid drawing any electricity from the grid to run our hotwater system.  When we have continuous cloudy, rainy days the solar thermal system will need backup heating.  For this we chose a gas boiler since we planned to have an outdoor barbecue plumbed with natural gas.

With these requirements defined let’s look at the design of the solar thermal system at Midori Haus.

(2)  Design

We gave our requirements to Patrick Splitt of App-Tech to design the solar thermal system.  He designed an elegant system to meet our needs and provided us with detailed drawings and equipment list.  Instead of sharing the detailed design on this post I’ll briefly describe system using my diagram below.

At the heart of the system is the indirect tank from TriangleTube, model SME120.  This is a tank within a tank where the water stored in the outer tank (66 gallons) heats the inner tank (105 gallons) that is used for heat storage and domestic hot water.  Note that the water in the 2 tanks never mix — the outside tank water is used strictly for heat exchanges and the inner tank is used inside the house for washing and bathing.  The tank has 2-inches of polyurethane foam insulation built into the tank to minimize standby loss and we further wrapped the outside of the tank with few layers of bubble foil insulation to really keep the heat in.

The water in the outer tank is heated by the heat exchanger coil in the bottom of the outer tank.

When the sun is shining the tiny photovoltaic (PV) panel generates electricity to power the pump that circulates propylene glycol in the heat exchanger coil up to the Heliodyne solar thermal panel.  This is a clever design because the pump would never circulate the heat exchange fluid to cool off at night.

If the temperature of the hot water in the inner tank drops below 120F the aquastat sensor would trigger a signal to kick on the gas boiler to heat the water in the outer tank.  The CC125S Challenger Solo Boiler from TriangleTube is designed to work together with the SME120.  It is energy efficient with up to 94% AFUE.

The hot water in the outer tank is also used for space heating inside the house.  The thermostat in the hallway controls the pump to circulate hot water through the water-to-air heat exchanger (think of this as a box similar to car radiator) located next to the heat recovery ventilaor (HRV).  Details of the HRV will be covered in a different post.

The combination of SME120 and CC125S allows us to maximize the use of heat energy from the sun.  This is another clever feature of the design we like because this allows us to use the hotwater heated by the sun at night and reducess short cycling caused by “cold water slug”in the pipe.

(3) Installation

The solar thermal system was installed by Duane Wilson of Wilson Hydronics in the mechanical room. The mechanical room is a compact 38 square feet space located on the south-west corner of the house.  Note that the mechanical room is outside of the air-sealing envelope of the house.

The solar thermal panels are made by Heliodyne, a solar thermal company located in the San Francisco Bay Area.  We used 3 of the flat plate collectors (Gobi 408 001) and rack mounted them on the south roof at 45 degrees angle.  Installing the panels at an angle helps to product more heat in the winter when the sun angle is lower.  

The copper pipes that run from the mechanical room to the panels on the roof are insulated with 1″ self sealing Armaflex tubes.

The controller to run the pump that sends propelyne glycol to the panels on the roof is from Art-Tec Solar.  The small PV panel on the roof next to the mechanical room generates electricity to operate the pump to circulate glycol through the solar collectors on the roof.  This ony operates when the sun is shining so we avoid cooling off the glycol heat transfer fluid  at night or during rain.

The vent you see on the flat roof is for the Challenger Boiler.

SME 120 indirect tank — before and after bubble wrap insulation.

 

Challenger boiler – CC125S.








































To minimize scaling in the hot water system we installed the Heater Treater from Falsken Water Treatment System.

There are many more interesting stuff in the mechanical room, such as expansion tanks, pumps, check valves, etc.  If you want to see the full detail, I invite you to attend one of our public tours of Midori Haus.

(4) Results Measured

“Is it comfortable?” and “How much energy did it take to provide adequate hot water for space heating?” are the two questions that are important to us.  So I will share our data from WELserver and PG&E to answer those questions.

Is it comfortable?  Yes, it feels comfortable in the house.  Let me show this to you with data.  Below is one of the signs I posted on the wall for the Passive House Days tour about 1 month ago.  The green screenshot on the right is from the WELserver we installed in our house reporting the temperature, humdity and VOC measurements from different rooms in the house.  There will be a different post on WELserver to describe it in greater detail.  The left side overlays the temperature measurements on the layout of the house.  As you can see, this data shows the house having a comfortable temperature range of 68 – 72 degrees Fahrenheit in the middle of the night when the external temperature is at 48F.

A more recent example displays the low heating demand for the house.  Data below was taken this morning at 8:30 A.M., after the sun had been shining for 1.5 hours.  Overnight low temperature was a very cold 28F.  This is very cold for our mild climate here and we did an overnight experiment where we turned off the heat recovery ventilator (HRV) to see how the house performs by relying on the super-insulation and the ultra tight air-sealing to keep the internal heat gains inside the house.  Below you see the temperature in the rooms of the house dropping a few degrees to 64 – 67 degrees Fahrenheit range.  This means that the heating system only needs to bring up the air temperature in the house by few degrees to keep it comfortable.  When energy modeling calculation was done using the Passive House Planning Package (PHPP) we learned that the house would need less energy than a hair dryer would use to keep it warm.

One anomaly you may notice below is the wide temperatures range of the exterior – south deck is 71F and the front porch is 33F.  In this case the front porch temperature is more representative of the actual outside temperature.  The south deck receives direct sun and the sensor gets pretty warm after having the sun beating down on it for 1.5 hours.

How much energy did it take to heat the hotwater?
The solar thermal system needs a boost from the boiler every now and then when the temperature of the inside tank dips below 120F.  This could be caused by standby loss (tank losing heat to the cold air surrounding the tank) or when there is a big draw (filling the soaking tub).  We used the soaking tub about 3 times during the summer and the temperature of the hotwater in the inner tank never dipped below 120F so the gas usage on our utility bill from PG&E is mostly from the boiler.  The few therms we used in the summer is probably due to the outdoor gas barbecue.

Our natural gas usage is indicated by the blue line in the graph above.  As you can see the gas usage is just a fraction of what similar homes use.  The definition of similar homes represented in this graph are 100 homes of similar size within 0.6 miles radius that use natural gas for space heating.

What About Cost?

You may have noticed that “lowest cost solution for minimal hot water use” was not part of our criteria in designing our solar thermal system.  We wanted to be comfortable and splurge with a nice soak every once in a while.  After agonizing over the high price tag we stuck to our goal of minimizing our carbon footprint by avoiding the use of electricity for hot water heating.  So we accepted the high price tag to implement this elegant solution and we hope this system will be with us for a long time.   We are using about 350 therms/year less than similar homes in the area but with natural gas prices being so low it would take a long time to pay back the higher cost of this system compared to some other approaches. The bright side is that we won’t feel the impact of natural gas price hike in the future because we use so little of it.  Also, we have resiliency built into our dwelling becaues we will have hot water during blackouts and gas outages.  As long as the sun is shining we will have hot water.

Conclusion

The solar thermal system we implemented is just one approach to heating water at home.  There are many paths to generating hotwater.  We chose this approach because of our desire to reduce carbon footprint and meet the needs of our hotwater usage.  It’s not a solution for everyone.  Some of our friends who are remodeling their homes in an environmentally conscious way have adopted a different approach.  They are going all electric by installing PV on their roof and are using heat pump water heater that could generate 3~5 watts of hot water for every 1 watt electricity used by the pumps and fans.  They also were concerned about carbon and chose to avoid natural gas because of methane leakage at the fields where natural gas is extracted.  I’m happy for them for choosing a solution that best meet their requirements.

What’s important, I believe, is to be clear about your desired outcomes and decide for yourself and share the results with others.  The real validation of the system is when the contractor who installed your system implements the same at his house.  We’ll see if this happens.

Paperstone

November 18, 2013

About 80 people toured Midori Haus last weekend during the International Passive House Days.  There were many insightful comments and questions from the guests about energy usage, heating system, cost, and many more.  One question visitors asked me several times was about Paperstone, our choice of countertop material.  When people asked the question, “Can you put hot things on it?  Will it leave a mark?” I could not answer it because I didn’t know.  Frankly, I was too chicken to try it out.

A few nights ago I remembered that we have a piece of Paperstone cutting board tucked under the sink and thought, “Well, if this one gets burnt from an experiment I won’t feel bad because it’s hidden most of the time anyway.”  Below I will share with you the photos from my experiment.

This is the piece of paperstone cutting board I will use for my test.  Notice there are no marks.

I’m using a cast iron skillet to cook chard at high temperature.  Notice the number “9” on the induction cooktop and the steam under the cover.

Now for the test.  The hot skillet is placed on the paperstone.  To give the skillet the maximum opportunity to make a mark I left the hot skillet on the Paperstone cutting board for 20 minutes.

Voila!  No mark on Paperstone cutting board.  Now I won’t worry about putting hot items directly on my countertop.

Passive House Days: November 9 & 10

November 3, 2013

We invite you to visit Midori Haus, the first Passive House in Santa Cruz County during the 2013 International Passive House Days.  

Dates/Times  
9-November-2013 (Sat)  1:00 p.m. – 5:00 p.m.
10-November-2013 (Sun)  1:00 p.m. – 5:00 p.m.

See the tour flyer for details.

What is Midori Haus?   Midori
Haus is an example of how
a 90-year old building can be both beautiful and ultra energy efficient.  We kept the original footprint of the
3-bedroom, 2-bathroom California bungalow originally built in 1922.  During 2012 it was retrofitted to
Passive House standards with the aim to combine extreme energy efficiency and
comfort of Passive House with the aesthetics of Arts and Crafts style.

What is Passive House? 
Passive Houses stay
at a comfortable temperature year round with minimal energy inputs.  Buildings make efficient use of the sun
and heat recovery so that conventional heating systems are unnecessary.  The materials and systems are modeled
to a stringent performance standard using PHPP (energy modeling software) that
aims to limit the annual  energy
demand for primary heating and cooling of the house 15 kWh/m2   (1.4kWh/ft2
or 4.75kBtu/ft2) per year. 
This energy target is about 80% less than what  conventional homes use for heating and cooling.

More Insulation

September 4, 2013

Today we added 10 more inches of blown-in cellulose insulation in the attic.  This will help keep the house a bit more cooler in the summer and warmer in the winter.  It’s been on the warm side lately so this extra insulation will help.  Most houses in Santa Cruz does not have air conditioning because we have such temperate climate here so some homes will get toasty warm when we don’t have the morning coastal fog.  Even on these hot days the thermostat in the hallway never rises above 75F (23.9C), so it’s still comfortable inside the house.

Before:  Blown in cellulose in the attic on 7-Aug-2012

After:  Additional cellulose in the attic on 4-Sep-2013
Before:  14″ of Blown-in cellulose

After:  24″ of Blown-in cellulose

Energy Usage: First 8 Months

September 1, 2013

Are you curious how much energy Midori Haus uses and how it compares with other houses in the area?  The proof is in the utility bill.  When I get the utility bill from Pacific Gas & Electric (PG&E) each month via email I always log in to their site to look at the “My Usage” tab to see how our electricity and natural gas usage compare with similar homes in the area.  Take a look at these screen shots:

Our electriity usage averaged 227kWh per month for the last 6 months (Mar-Aug).  You can see from the graph that our usage (blue line) is pretty low, tracking closely to the efficient homes (green line) in the area.  The house was in construction through January and we started living full time in the house on March 15, 2013 when the blinds for the windows were installed.

Electricity usage was a bit higher in February and March when we had several fans and vaporizers running 24/7 to remove the smell coming from the stains applied to the fiberglass door.  Usage was low in April when we were on vacation for 10 days.

 Our natural gas usage averaged 1.8 Therms per month for the last 6 months (Mar-Aug).  Our gas usage (blue line) is just a fraction of similar homes in the area and even lower than the most efficient homes in the area.

We use a gas boiler as a backup heat source for domestic hot water.  Primary source of heat for the hot water is the sun.  We have a solar thermal system (to be explained in a separate post) that pre-heats the hot water.  We also have a natural gas barbecue grill out on the deck.  That accounts for the little blip in gas usage in the summer — 2 Therms in June, 1 Therm in August.

You may wonder what homes are compared in these graphs.  PG&E does a good job of giving us an apples-to-apples comparison.  The definition of similar homes for us is single family houses with an average of 1572 sq ft using natural gas heat within 0.6 miles.

Our house is technically heated by gas because PG&E does not have a category for homes heated by the sun.  How is our house heated?  When the temperature in the hallway thermostat dips below 68F a pump in the mechanical room turns on to circulate hot water (mostly heated by the sun) through the hydronic coil in the house.  The hydronic coil is used to warm up the air in our ventilation system. For a typical house this amount of heat is not enough to make it comfortable.  But Midori Haus is a passive house that is super-insulated and super-airtight.  So we only need the equivalent energy of half a hairdryer to heat our home in the winter.  Should the temperature in the hot water tank dip below 120F then the backup gas boiler turns on, thus the house is technicall heated by natural gas.  But as you can see from the graph above this doesn’t happen regularly.  The higher usage of natural gas in January and February reflects the start-up condition for the hot water heater.  The storage tank and the backup gas boiler were installed and turned on in January when it was cold outside and the sunlight duration short.  So the gas boiler did bulk of the work to heat up 165 gallons of water to 120F.  It’s amazing that we only used only about quarter of natural gas that similar homes used in January and the house was comfortable.

The amount of energy reflected in the utility bill is not only for heating the house.  A good portion is attributed to appliance choices and our behavior.  At Midori Haus we use electricity for cooking, clothes washing, lighting and handful of gadgets plugged into the wall.  When we lived in the 1300 sq ft condo we had lots of gas appliances — wall furnace, standard hotwater heater, stove and oven.  So I expected our electricity usage to be a bit higher at Midori Haus than at our condo.  And it is a bit higher but not by much.  To compare the energy usage between similar seasons I grabbed a few screen shots of the energy usage at our condo in 2012:

 The monthly electricity usage averaged about 147 kWh for the condo for the same period last year (Mar – Aug 2012). Some of the gadgets consuming electricity are the same — laptop computers, stereo, hair dryer, coffee grinder, etc.  The occupant behavior is somewhat similar too.  The difference in occupant behavior is that I spend far less time at Internet cafes now.  Back in 2012 when I was uncomfortable at the condo (I thought it wasn’t warm enough) I packed up my computer and hung out at the local coffee shops.  Now I don’t do that.

 The gas usage at our condo has an interesting story.  In the winter of 2011-2012 we did an experiment of setting the thermostat for our wall furnace really low and wore layers of sweaters to keep warm.  In our mild climate in Santa Cruz if you set your thermostat at 55F in the winter it hardly turns on.  I thought our gas usage would be pretty flat to track with the summer usage pattern.  But it didn’t.  It was lower than similar homes and the curve rather bumpy. The winter usage went up as if we were turning on the wall furnace but we did not.  Our gas usage (blue line) was even higher than efficient similar homes.  What’s going on?  The likely culprit is the water heater.  The gas water heater at the condo was located in a cabinet next to the refrigerator in the kitchen.  It’s in the conditioned space so it had no insulation around the water heater.  This is OK for most times when the kitchen temperature is between 68F and 72F, but not when the kitchen temperature is at 58F.  So the water heater was using more gas in the heater to keep the water warm.  Interesting, isn’t?

 The similar homes for the condo are all apartments or condos with natural gas heat located within 0.9 miles.  Our condo shared 2 walls with our neighbors so 50% of the walls are well-insulated.  But it is definitely not airtight and I was often cold in the winter.  People in cooler climate may laugh when I complain about it being cold in the winter here but I grew up in Hawaii where it’s nice and warm.

It’s hard to compare the energy bills of homes with different types of appliances (e.g. gas stove top vs. induction cooktop, gas clothes dryer vs. electric condensing clothes dryer, gas wall furnace vs. hydronic coil).  To do an apples-to-apples comparison I took the 6 months data (Mar – Aug 2013) for Midori Haus and the 6 months data for the condo (Mar – Aug 2012) and converted the gas usage (measured in Therms) to equivalent electricity usage (measured in kWh).  1 Therm is equivalent to 29.307 kWh.  Plotting this combined usage data on a graph I found the Midori Haus total energy usage to be much less than the total energy we used at the condo.  It’s the same people with same occupant behavior but  living in a different space.  This means the dwelling itself is much more energy efficient and the space is much more comfortable.  Passive house is amazing.

>